(Y^3+1)-((y^2+1)+(3y-7))=0

Simple and best practice solution for (Y^3+1)-((y^2+1)+(3y-7))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (Y^3+1)-((y^2+1)+(3y-7))=0 equation:



(^3+1)-((Y^2+1)+(3Y-7))=0
We add all the numbers together, and all the variables
-((Y^2+1)+(3Y-7))=0
We calculate terms in parentheses: -((Y^2+1)+(3Y-7)), so:
(Y^2+1)+(3Y-7)
We get rid of parentheses
Y^2+3Y+1-7
We add all the numbers together, and all the variables
Y^2+3Y-6
Back to the equation:
-(Y^2+3Y-6)
We get rid of parentheses
-Y^2-3Y+6=0
We add all the numbers together, and all the variables
-1Y^2-3Y+6=0
a = -1; b = -3; c = +6;
Δ = b2-4ac
Δ = -32-4·(-1)·6
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{33}}{2*-1}=\frac{3-\sqrt{33}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{33}}{2*-1}=\frac{3+\sqrt{33}}{-2} $

See similar equations:

| 12.5=s+15.7 | | (4x-2)^2=36x^2 | | H(x)=-4x+5 | | 3=6b+10 | | 2x^2+17x-13=8 | | 26-11=5x-5 | | 6-2/3r=11/2 | | 16x-5=14x+11 | | 3/8+2x/3=5/6 | | 26-11=5x-6 | | 1.75x=5.25 | | 7b+5=58 | | y+(y-30)=90 | | y-10=4y-1 | | 11-4x-4-3=11+8-4x-16 | | x+4=12(+5) | | X+2.5x=7 | | 2n+15=33 | | 26-11=(x-6) | | -5/2=-18-y/16-4 | | 3x+2=x+1+2x+2 | | 8x-10=3(6-2) | | -r^2=1-2r | | 16−2x=5x+9 | | 21/100=18/x | | X^2+16x-21=-5 | | y=31 | | 3(x-3)/2=3(x+4)/9 | | (6x-12)/9=(2x+2)/6 | | z(37-8)=2(9-4z) | | -7(-2-p)=8(p+2) | | 6(2-2y)=5(2y-2 |

Equations solver categories